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Abstract. We study a sliding block model incorporating constraints in an attempt to 
understand the slower than exponential relaxation observed in glassy systems. Blocks are 
free to slide along the axes of a regular lattice but cannot interpenetrate. We simulate 
two-dimensional L x L lattices with L = 8, 16, 32 and 64 2nd different number of vacancies. 
Three-dimensional L x L x L lattices with L = 4, 8, 16 and 32 and one vacancy are also 
studied. We find the existence of three time regimes for relaxation towards complete 
disorder, in both two and three dimensions. In the short-time regime the relaxation follows 
a stretched exponential law; in the intermediate-time regime there is a J t  behaviour; and 
in the long-time regime the relaxation is exponential. In the intermediate- and long-time 
regimes the results agree well with the theoretical results of Brummelhuis and Hilhorst. 
The stretched exponential behaviour in the short-time regime is a natural consequence of 
the constrained dynamics. 

1. Introduction 

Glassy systems exhibit non-exponential relaxation. In a structural glass most atoms 
or groups of atoms are sterically hindered by their neighbours and cannot move far 
unless some of the neighbours move first. This is one form of constrained dynamics, 
in which some degrees of freedom are locked or suppressed unless other degrees of 
freedom are in particular states. Various idealised models using constrained dynamics 
produce slow relaxation and some other glassy properties. One class of examples is 
constrained kinetic Ising models, including the Fredrickson-Andersen [ 1-31 two- 
dimensional model, several one-dimensional models [4,5], and the Cayley tree PSAA 

[6] model. Other models utilising constrained dynamics explicitly or implicitly are the 
tiling models of Stillinger and Weber [7] and the Gibbs-DiMarzio model [8]. Another 
closely related model by Ertel et a f  [9] treats diffusion of particles in a square-lattice 
gas; strong kinetic constraints exist at high concentration of particles. 

We have examined another simple model which incorporates constrained dynamics. 
It is based on a child’s puzzle which consists of labelled blocks sliding within a frame; 
see figure 1. Constraints exist because most blocks cannot move; motion is only possible 
if there is a neighbouring vacancy to move into. These particular constraints relate 
this model to free volume models [ lo]  and also to vacancy diffusion models [ll-131. 
In free volume models each molecule is restricted to movement within a cell defined 
by its nearest neighbours and transport occurs only if the free volume is greater than 
the molecular volume. In vacancy diffusion models relaxation occurs at a site only 
when a defect has succeeded in diffusing to it. 
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Figure 1. The toy model. 

We simulate random motion of the blocks in two- and three-dimensional versions 
of this puzzle with one or more vacancies. The motion is thus that of a constrained 
random walk. The evolution of the system is followed as it relaxes from an initial 
configuration to the perfectly jumbled random equilibrium state. We find an approxi- 
mately stretched exponential relaxation at short times, crossing over to a power law 
decay and finally to a pure exponential at long times. Brummelhuis and Hilhorst [ 141 
have recently applied random walk theory to the two-dimensional model with one 
vacancy, and with a low vacancy density [ 151. They make predictions for the appropri- 
ate decay function in the intermediate- and long-time regimes. Our results agree well 
with their theory. 

In section 2 we describe the model and computational method in more detail. Our 
results are presented in section 3 with a conclusion in section 4. 

2. The model 

We consider a square or cubic frame of N = L2 or N = L3 sites. These sites are filled 
with N - Nv labelled blocks able to slide along the rectangular axes. For convenience, 
we use periodic boundary conditions instead of rigid walls. A block can move only 
if it is adjacent to one of the Nv vacancies. The whole system has N!/Nv! possible 
configurations. For the one-vacancy case though, only half of these configurations are 
accessible because returning the vacancy to its original position necessarily takes an 
even number of steps, and hence can only produce an even permutation of the remaining 
blocks; this applies for any position of the vacancy. Rearranging to a desired permuta- 
tion can involve a very large number of steps; the path between states in configuration 
space is very tortuous. 

Starting from an initial configuration, at each time step we select a vacancy and a 
direction independently at random, and move the vacancy in the selected direction 
unless there is already a vacancy there. This procedure generates a stochastic sequence 
of moves equivalent to that generated by selecting one block (i.e. non-vacant site) at 
random, selecting a direction at random, and moving the block if and only if the 
destination site is vacant. This latter procedure is more physical in that it involves 
atoms rather than vacancies being thermally excited, with a constant hopping attempt 
frequency per atom, but would be much slower since most attempts fail. 
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We monitor the configuration space distance d (  t )  from the initial configuration to 
the configuration at time t. We define d ( t )  as the sum of the individual displacements 
d,( t )  of the N - Nv blocks using the minimum Manhattan distance around the torus 
implied by the periodic boundary conditions: 

d ( t )  =c  d,( t )  
I 

with 

d,(t)=lAx,I+lAy,I+ . . .  
where 

IAx,I=min(lx,-x,,J, Ix, - L+xtOl).  

Here the ith block has initial position (x,,, y,,, . . . ), and position (x, ,  y,, . . . ) at time t. 
In the long-time limit d (  t )  approaches d,  where 

d, = ( N  - N v )  LD/4 

in D dimensions, since the average displacement of a block from its starting point 
tends to L/4 in each dimension. The approach to equilibrium is described by the 
relaxation function q(  t )  defined by 

d,-d(r) 
d ,  

d r )  = 

which goes from 1 at t = 0 to 0 as t + CO. Our goal was to measure the average relaxation 
function ( q ( t ) )  for various values of the parameters D, L and Nv. For each case 
considered we performed at least 100 independent runs from random initial positions 
and averaged the resulting values of q ( t )  at each time step. 

Theoretically [ 141 we expect three distinct time regimes in the relaxation: 

short: t s L d  1nL 

intermediate: 

long: t b LD+’. 

L~ In L i t i  L ~ + ’  

In the short-time regime the constraints are crucial; there are strong correlations 
between steps, and vacancies still remember their initial positions. In the intermediate- 
time regime the vacancies have randomised (i.e. each has visited everywhere on average) 
and so the blocks move in uncorrelated random walks. In the long-time regime the 
blocks themselves have been everywhere and approach the perfectly randomised 
equilibrium state. 

3. Results 

Figure 2 shows typical results for q(  t )  on linear-log axes for the D = 2 case with one 
vacancy and L = 8, 16, 32 and 64. The time axis is in units of a single jump attempt 
(selection of a vacancy and a direction), not normalised by any L-dependent factor. 
On these axes a pure exponential function exp(-t/.r) has a fixed sigmoidal shape as 
exemplified by the broken curve; changing 7 merely shifts the curve horizontally. The 
observed relaxation functions are clearly non-exponential, particularly at short times. 
In the long-time regime, when q ( t )  has become small, an exponential is a good fit, 
with .r scaling as LD+*, or as L4 for the D = 2 results shown. 
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Figure 2.  Plot of 9 (  t )  against log r for the two-dimensional model. The full curve is a fit 
of a stretched-exponential function, and the broken curve is a simple exponential function. 
The fitting parameters are given in table 1. The error bars for the points are smaller than 
the point size used in this and other figures. 0, 64 x 64; M, 32 x 32; A, 16 x 16; 0, 8 x 8. 

In the short-time regime, where q(  t )  is close to 1, a stretched exponential function 
q(  t )  = exp( -( t /  T , , ) ~ )  provides a good fit to the data. The fit is much better than that 
obtainable with an  enhanced power law (A exp[-B(log( t / ~ ) ) ~ ] ) .  The stretched 
exponential fit is exemplified by the full curve in figure 2. Figure 3 shows this more 
clearly on log-log against log axes, chosen to produce a straight line for a true stretched 
exponential. Results are shown for the largest two-dimensional one-vacancy case 
(L = 64) from figure 1, for a three-dimensional L = 32 case with one vacancy, and for 
a two-dimensional case with many vacancies. For few vacancies, the fit is good for 
almost four decades in time. As the vacancies increase in number, implying a smaller 
degree of constraint (i.e. paths in configuration space are much less tortuous) the fit 
is good for only around two decades in time. Table 1 gives the values of the various 
parameters for the straight line fits of the figures. The value of the exponent p is not 
closely related to that expected for a physical system like a glass, since this model is 
so simplistic. 

In the intermediate-time regime, a power law function q( t )  = 1 - kt" yields points 
lying on a straight line for two decades of time. Figure 4 shows this on log axes, with 
the time axis normalised by LD+'. The near coincidence of the lines shows that 
k - L-'D'2'-' for the two- and  three-dimensional versions of the model. As indicated 
by the theory [ 14, 161 this is the regime where the atoms perform an  uncorrelated walk, 
and  we d o  not expect a stretched exponential decay. The results are in accord with 
the theory of Brummelhuis and Hilhorst [14,15,17] who predict a power law with 
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Figure 3. Plot of log(-log q ( t ) i  against log(r) for three examples in the short-time regime. 
The straight-line fits are stretched exponential functions. 0, 32 x 32 x 32, one vacancy; A,  
64 x 64, one vacancy; 0, 64 x 64, 1000 vacancies. 

Table 1. Table showing a representative sample of the results obtained. 

Shon Intermediate 
Long 

Dimension Size Vacancies p T,,X n k x T e X p  x l o 6  

2 64 1 0.73*0.01 2.5110.2 0.51*0.01 3.710.1 8.06 * 0.02 
2 64 1000 0.78*0.01 5.0110.2 0.52r0.01 3.410.1 6.77 * 0.02 
3 32 1 0.76*0.01 0.39i0.02 0.51k0.01 5 .7 r0 .1  18.210.2 

n = 0.5. There is a simple relationship between our q ( t )  and their (Iy,i + ly21 + . . . ): 

\ i = ~  I 

for D dimensions. Brummelhuis and Hilhorst predict the following relation for the 
intermediate-time regime: 

for two and  three dimensions with a2 = 0.5945 . . . and a3 = 1.2473 . . . . In our simula- 
tions we find a2 = 0.57 kO.01 and a3 = 1.21 * 0.01 with n = 0.5 in both the cases, showing 
that our results are compatible with the theory. Note that the table gives results in 
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Figure 4. Plot of log(1- 9 ( 1 ) )  against l og( r /LD+ ' )  in the intermediate-time regime. The 
straight-line fits are of the form 9(  f )  = 1 - kf" with n = 0.5. 0, 32 x 32 x 32, one vacancy; 
E, 64 x 64, one vacancy; 0 ,  64 x 64, 1000 vacancies. 

terms of the equation q(  t )  = 1 - kt" rather than the Brummelhuis and Hilhorst equation. 
For Nvc< N, we find that aD scales with the number of vacancies, as predicted by 
Brummelhuis and Hilhorst. However, this breaks down before the 1000 vacancy case 
shown for which Nv/N =0.24. The exponent does not depend appreciably on the 
number of vacancies or the dimension. 

For the long-time regime the decay is pure exponential with q( t)-exp(-t/TeXp), 
as is seen in the broken curve in figure 2. Values of T ~ , ~  are given in the table. The 
exponential behaviour is seen for any Nvl N. 

4. Conclusion 

We have studied a simple toy model of sliding blocks to examine the consequences 
of constraints on the relaxation. We obtain good agreement with the results of 
Brummelhuis and Hilhorst in the intermediate- and long-time regimes where their 
analytical results are applicable. We also see that going from two to three dimensions 
does not change the qualitative behaviour of our results for the whole relaxation regime. 

In the short-time regime, where our model is highly constrained, we obtain stretched 
exponential relaxation. The constraints give rise to a correlated walk for any particular 
atom. The walk is correlated, in two dimensions, up to times of the order of L' In L; 
the direction from which a vacancy next returns to a site is correlated with that from 
which it last left. For longer times the directional correlation is lost. The correlated 
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walk, a consequence of the constraints, gives rise to a relaxation function for which a 
stretched exponential is a good fit. This indicates, as do other models mentioned in 
the introduction that strong constraints which imply a correlated motion [ 18, 191 for 
the atoms lead to approximately stretched exponential relaxation in glassy systems. 
In three dimensions, we expect that the atoms should exhibit a correlated motion for 
times of the order of L3 In L, and again a stretched exponential is observed in this 
time regime. As the vacancies increase in number the stretched exponential behaviour 
is a good fit only in a smaller and smaller region of log t ,  extablishing further the 
relationship between constraints and the stretched exponential relaxation. 
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